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Abstract
Many studies have been performed to describe quantum dots using a parabolic
confining potential. However, infinite potentials are unphysical and lead to
problems when describing laterally coupled quantum dots. We propose the
use of the parabolic potential of a homogeneous density distribution within a
2D jellium, with the Coulombic potential outside that jellium. The electronic
structure for such quantum dots is calculated using a wavelet-based electronic
structure code, developed for this purpose. The potential is compared with its
limits for infinitely small and infinitely large radii of the jellium, i.e. a 2D atom
and a pure parabolic potential respectively. Finally, two such laterally coupled
quantum dots are studied.

1. Introduction

Quantum dots have recently attracted much interest both experimentally and theoretically [1].
Quantum dots are human-made nanoscale structures in which electrons are confined in all
three spatial directions. As they show typical atomic properties like discrete energy levels and
shell structures, they are often referred to as artificial atoms. However, in contrast to natural
atoms, in quantum dots the number of electrons is tunable.

Starting from quantum dots as a structure, more complex systems are conceivable and
likely to have prospects in future applications. An example is the analogy of a two-atom
molecule consisting of two coupled quantum dots, where the coupling can be both vertically
and laterally.

Many studies have been performed to describe quantum dots using a parabolic confining
potential, see for example [2–5]. However, such infinite potentials are unphysical.
Furthermore, they give rise to practical problems when describing laterally coupled quantum
dots. Various other potentials have been suggested that do not have this problem. A first
example is a parabolic potential only from the nearest centre [6]. Such a potential enables
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lateral coupling but still has the disadvantage that it goes to infinity. In order to get rid of this
limit others have suggested potentials that are close to the harmonic potential at their bottom
but have a smooth lateral boundary with a finite asymptotic value. Examples of such potentials
are a Gaussian potential [7] and a smooth boundary potential [8].

In this paper we propose a new potential that is also harmonic at its centre and has a constant
asymptote, but that is physically motivated as derived from the description of a quantum dot
as a 2D jellium. The potential we propose is the parabolic potential of a homogeneous density
distribution within a 2D jellium, with the Coulombic potential outside that jellium. This
potential is described in section 2. Section 3 describes how the Kohn–Sham equations are
used to calculate the electronic structure of such quantum dots using an in-house wavelet-
based electronic structure code. This is used in section 4 to study our new potential for various
radii of the jellium. These results are compared with its limit for infinitely small and infinitely
large R, i.e. 2D atoms and a pure parabolic potential respectively. Finally, in section 5 a
quantum dot molecule consisting of two laterally coupled quantum dots is studied.

Throughout the paper we use the donor Hartree HHD = m∗
e EH/ε2 as a unit of energy and

the donor Bohr radius aD = εa0/m∗
e as a unit of length, where EH is the atomic Hartree energy,

a0 is the atomic Bohr radius, m∗
e is the effective mass and ε is the effective dielectric constant

of the host material. In case of GaAs these units are typically 10.96 meV and 101.89 Å,
respectively. Further units are the electron charge e as the unit of charge and the effective
electron mass m∗

e as the unit of mass.

2. Potential

The potential that we propose to study laterally coupled quantum dots is derived from the
description of a quantum dot as a 2D jellium. This stems from the way quantum dots can
be created experimentally. Because of the application of a gate potential, an area of electron
depletion will appear near the gate, which can be modelled most simply by assuming a constant
positive background (i.e. jellium). We propose the parabolic potential of a homogeneous
density distribution within the 2D jellium, with the Coulombic potential outside that jellium,
i.e.

Ve(r) =




− Q

R
− Q

4π R2
(R2 − r2) r � R

− Q

r
r > R,

(1)

where R is the radius of the circular jellium and Q is its total charge. The offset
−Q/R − Q/(4π) in the harmonic part is required to make the potential continuous and
asymptotically go to zero at large distances. This potential has been plotted in figure 1 for
Q = 24. The left part of the figure shows how the potential is constructed from its two parts,
in this case for R = 4. The right part shows the potential for three different radii of the jellium.

3. Approach

The electronic structure for the 2D quantum dots is calculated by solving the Kohn–Sham
equations numerically within the effective mass approximation

(− 1
2∇2 + Ve(r) + VH(r) + Vxc(r))�i(r) = εi�i(r). (2)

To solve this 2D problem we have developed a wavelet-based electronic structure calculations
program, analogous to our 3D electronic structure code for molecules [9]. Briefly, the program
calculates the electronic structure self-consistently. Starting from an initial guess for the
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Figure 1. Left: the potential consists of two parts: quadratic within a radius R and Coulombic
outside this region. Right: the potential for three different radii of the jellium, with constant
charge Q.

wavefunctions, the parts of the Hamiltonian are calculated. Using this ‘fixed’ Hamiltonian,
the wavefunction is improved by using a minimization scheme. Then the Hamiltonian is
recalculated, the wavefunction updated, etc. This is repeated until a self-consistent solution
has been reached. The choice for wavelets as the basis set allows for an accurate description
over a range of length scales. This is because wavelets constitute a multiresolution approach,
allowing us to use low resolution and to add extra resolution only in those regions where
necessary, which is a nice property due to the well-known fact that electronic wavefunctions
vary much more rapidly near the ‘atomic’ centres than in interatomic regions. For more details
on the use of wavelets for electronic structure calculations see [9, 10].

The parts constituting the Hamiltonian are, however, different in 2D space from those in
3D space. The external potential describes the confinement of the quantum dot. We use the
one proposed in equation (1) and the simple harmonic one for comparison. A 2D version of
the exchange and correlation energy functionals is given by Tanatar and Ceperley [11]. They
suggest the use of the local density approximation (LDA) for the exchange potential. In 2D
form this potential is [12]

Vx(r) = −
√

8ρe

π
. (3)

The correlation potential is the functional derivative of their correlation energy functional,
yielding

Vc(r) = a0(6a1t2 + 7t3)

4(a3 + a2t + a1t2 + t3)
− a0t2(a2t + 2a1t2 + 3t3)(a1 + t)

4(a3 + a2t + a1t2 + t3)2
(4)

where t = (πρe)
1/4 and the parameters a0, a1, a2 and a3 were taken from table 4 of [11].

The Hartree potential VH is calculated using a 2D version of Chelikowsky’s direct integration
method [13] that we have developed. Using this method, the Hartree potential VH is evaluated
on a grid by assuming the integrand does not change appreciably within a square of area h2

around each grid point i, j . VH is given by

VH(xi , y j) =
∑
i ′, j ′

ρe(xi ′, y j ′)g(xi − xi ′ , y j − y j ′), (5)



6980 A J Markvoort et al

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 2 4 6 8 10 12 14 16 18 20 22 24

1/(  C)ω

n

R=0.8 aD
R=4 aD

R=20 aD
parabolic

Figure 2. Scaled inverse of the capacitance for different confining potentials as a function of the
number of electrons.

where, for i, j �= i ′, j ′,

g(xi − xi ′, y j − y j ′) = h2√
(xi − xi ′)2 + (y j − y j ′)2

. (6)

For i, j = i ′, j ′, i.e. near the square root singularity, an explicit integration over the square
yields

g(0, 0) = 2h ln

( √
2 + 1√
2 − 1

)
. (7)

4. Single quantum dot

The confining potential we proposed in equation (1) has two interesting limits. First, for
R → ∞ we get the harmonic potential

Ve(r) = − Q

4π
+

1

2
ω2r2, (8)

where ω is related to the jellium charge density ρ = Q/π R2 via

ω =
√

ρ

2
. (9)

In this limit we return to the parabolic confining potential that has been studied extensively.
Second, for R → 0 the potential reduces to

Ve(r) = − Q

r
, (10)

which is the potential for 2D atoms [14, 15].
These two limits have a different shell structure. For the parabolic potential the shell

will be filled with 2, 6, 12, 20, . . . electrons, whereas for the 2D atoms these numbers are
2, 8, 14, 24, . . .. This shell structure can be visualized using the capacitance C:

C(n) = 1

µ(n + 1) − µ(n)
, (11)
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Figure 3. A contour plot of the first 12 orbitals �i (r) for the parabolic confining potential.

Figure 4. A contour plot of the 12 orbitals �i (r) for the potential with R = 0.8aD and Q = 24e.

where n is the number of electrons in the quantum dot and µ is the chemical potential
µ(n) = E(n) − E(n − 1). The filling of a shell will result in a peak in the inverse of this
capacitance. This inverse capacitance has been plotted in figure 2 for the parabolic potential
(R → ∞) and for three different values of R, each a factor 5 apart, i.e. 20aD, 4aD and 0.8aD.
For the choice Q = 24e, these radii correspond, according to equation (9), to the strength
ω of the parabolic potential near the centre of 1.07, 5.36 and 26.78 meV respectively, which
are numbers consistent with experimental values. For the pure parabolic potential the value
1.07 meV was used. As can be seen in the figure, for R = 20aD the shell filling is similar to
the case of the pure parabolic potential, for R = 4aD the difference between the higher orbitals
is already larger and for R = 0.8aD the distinction can be seen by a movement of the peak in
the inverse capacitance from n = 20 to 16.

The orbitals corresponding to the parabolic potential and to the potential with R = 0.8aD

are plotted in figures 3 and 4 respectively. Because the orbitals corresponding to the parabolic
potential are smaller, the scale of the latter figure is twice as small as that of the former. As
expected, the innermost orbitals are very similar. The higher orbitals, however, are much wider
for the potential with R = 0.8aD, since these electrons are much less confined.
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of electrons.

5. Laterally coupled quantum dots

Because of the asymptotic behaviour of the potential, where the potential goes to zero for
large distances, arrays of quantum dots can be modelled straightforwardly. For example, two
laterally coupled quantum dots form a quantum dot molecule.

Here, we will consider two quantum dots with charge Q = 28e and radius R = 4aD,
corresponding to a parabolic potential of 5.78 meV. These quantum dots are studied as a
function of the distance D between their centres, where the two quantum dots contain 12
electrons each.

For D = 0 the two quantum dots are centred at the same position and will therefore form
just one quantum dot with the same radius but twice as high a charge density and thus twice
as strong a confinement. For such a quantum dot, the first 12 orbitals will have the same form
as with the pure parabolic potential; thus the orbitals are filled at 2, 6, 12 and 20 electrons.

This can be seen again using the inverse of the capacitance, which is shown in figure 5.
In this figure it can also be seen that if the inter-centre distance D increases, quantum dot
molecular orbitals come into existence with different shell structure. For D = 10.0aD the first
three peaks in the inverse of the capacitance are at 4, 12 and 24 respectively. The orbitals for
this case are shown in figure 6. In between, for D = 4.0aD, both peaks at 20 and 24 can just be
discerned. If the distance between the quantum dots increases further, the two quantum dots
will be separated, resulting in two single quantum dots, which were described in the previous
section.

In figure 7 the energy of this system of two quantum dots, with a total of 24 electrons, has
been plotted as a function of the distance D between the two centres of the dots. The two limits
of the energy as a function of the inter-centre distance of the quantum dots, i.e. for D = 0 and
D → ∞, can be understood using the 2D pure harmonic oscillator, i.e. without the electron–
electron interaction. Because in both limits only the lower orbitals are filled, these orbitals
are very similar to the solution of a harmonic oscillator up to an offset −Q/R − Q/(4π), see
equation (1). Such an offset does not change the shape of the eigenfunctions, it just causes a
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Figure 6. First 12 orbitals for two quantum dots at distance D = 10.0aD.
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Figure 7. The energy E of the two quantum dot system versus the inter-centre distance D.

change with the same value in the energy eigenvalues, which are well known for the 2D pure
harmonic oscillator to be mω with degeneracy m, for m = 1, 2, 3, . . ., where each orbital can
occupy two electrons. Thus, in terms of ω the lowest energy eigenvalues of one quantum dot
are mω − 1

2 (4π R + R2)ω2 with degeneracy m.
One single quantum dot thus makes two contributions to the total energy: first, the

contribution of the harmonic oscillator 2 · (1 · 1 + 2 · 2 + 3 · 3)ω = 28ω; and second, the
offset, which for our Q and R is equal to 12 · [−8(π + 1)ω2]. Because Q = 28, and R = 4,
ω = √

7/(8π). Thus the total energy is equal to 28
√

7/(8π) − 84(π + 1)/π , which is
approximately equal to −96HHD. Two such quantum dots infinitely far apart therefore yield
E ≈ −192HHD, when the electron–electron interaction is neglected.

The other limit is where the two quantum dots are centred at the same place. This
yields one quantum dot with the same radius but with a charge twice as high, and twice
as many electrons, i.e. 24. Thus, again, there are two contributions to the total energy, namely
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2 · (1 · 1 + 2 · 2 + 3 · 3 + 4 · 4 + 2 · 5)ω = 80ω, and an offset 24 · [−8(π + 1)ω2], where
ω = √

7/(4π). The total energy is therefore equal to 80
√

7/(4π) − 336(π + 1)/π , which is
approximately equal to −383HHD.

The discrepancy between these limits and the results in figure 7 can be explained by
the omission of electron–electron interactions in the calculation of the limits. Because these
electron–electron interactions are dominated by repulsion and make a (quadratically) larger
contribution to the total energy for higher electron densities, the discrepancy is much larger
for the ‘fused’ dot (D = 0) than for the infinitely far, separated dots (D → ∞).

The limit for the electronic energy for infinite dot separation can be calculated in a second
way as well, i.e. as twice the energy of one such single dot. For our dots this results in
−142HHD. It has been confirmed that the approach towards this limit in figure 7 is, as expected,
(−2nQ + nn)/D.

6. Conclusion

In conclusion, we have studied the electronic states of quantum dots, solving the Kohn–Sham
equations in the effective mass approximation using a model potential for a 2D jellium. For
this purpose a 2D electronic structure program has been developed. Specific to this program
are the use of wavelets as a basis and the evaluation of the Hartree potential using a 2D
version of Chelikowsky’s direct integration method which we developed. The orbitals have
been shown for single quantum dots and the filling of the shells has been compared with the
case of a parabolic model potential. By laterally coupling quantum dots, which can be done
straightforwardly using our potential, quantum dot molecules have been modelled.
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